NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2014-2015

EE2004/IM1004 – DIGITAL ELECTRONICS

November / December 2014

Time Allowed: 2½ hours

INSTRUCTIONS

- 1. This paper contains 5 questions and comprises 7 pages.
- 2. Answer ALL questions.
- 3. All questions carry equal marks.
- 4. This is a closed-book examination.
- 1. (a) Simplify the circuit shown in Figure 1 down to its minimum sum-of-products (SOP) form and connect your minimum circuit using the 74LS54 TTL AND-OR-INVERT (AOI) gate and 7404 TTL hex inverter ICs given in Figure 2 on page 2.

(8 Marks)

Figure 1

Note: Question No. 1 continues on page 2.

Figure 2

- (b) Draw the transistor-level CMOS AOI circuit for the minimum function derived in part (a). (7 Marks)
- (c) List the advantages of CMOS circuits. (5 Marks)

2. (a) A circuit is designed to receive information in the form of BCD code. The bits it receives are A_3 , A_2 , A_1 , A_0 , with A_3 being the MSB. To ensure that the bits received form a valid BCD code (i.e., ≤ 1001), the circuit includes a BCD error detector circuit that examines the received code. Design the BCD error detector circuit to produce a HIGH for an error condition. Derive the truth table and the minimal function. Draw the logic diagram of the minimal function.

(10 Marks)

- (b) The truth table of a 4-bit magnitude comparator is given in Table 1. Design a 6-bit magnitude comparator to compare a binary input $(X_5X_4X_3X_2X_1X_0)$ with the binary number (010101_2) , using:
 - (i) <u>TWO</u> 4-bit magnitude comparators and basic logic gates such as Inverters, NANDs, NORs, etc., if necessary.
 - (ii) <u>ONE</u> 4-bit magnitude comparator and basic logic gates such as Inverters, NANDs, NORs, etc., if necessary.

(10 Marks)

Table 1 Truth table of 74×85 4-bit magnitude comparator

Input Data				Cascading Inputs			Outputs		
A_3B_3	A_2B_2	A_1B_1	$A_{\theta}B_{\theta}$	$I_{A>B}$	$I_{A < B}$	$I_{A=B}$	$Y_{A>B}$	$Y_{A < B}$	$Y_{A=B}$
$A_3 > B_3$	X	X	X	X	X	X	H	L	${f L}$
$A_3 < B_3$	X	X	X	X	X	X	L	H	L
$A_3 = B_3$	$A_2 > B_2$	X	X	X	X	X	Н	L	L
$A_3 = B_3$	$A_2 < B_2$	X	X	X	X	X	L	H	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	X	X	X	X	H	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	X	X	X	X	L	H	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} > B_{\theta}$	X	X	X	H	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} < B_{\theta}$	X	X	X	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} = B_{\theta}$	Н	L	L	H	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} = B_{\theta}$	L	H	L	L	H	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} = B_{\theta}$	X	X	н	L	L	Н
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} = B_{\theta}$	L	L	L	H	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_{\theta} = B_{\theta}$	H	H	L	L	L	L

3. Analyze the clocked synchronous state machine in Figure 3.

Figure 3 A clocked synchronous state-machine

- (a) Determine whether Figure 3 is a Mealy machine or a Moore machine and explain your answer.
 - (2 Marks)

(b) Write the excitation equations.

(4 Marks)

(c) Write the transition equations.

(4 Marks)

(d) Draw the transition table.

(4 Marks)

(e) Draw the state/output table.

(2 Marks)

(f) Draw the state diagram.

(4 Marks)

4. (a) Table 2 shows the state table of a state machine with single input I. The present state is represented by P. The table entries are of the form N/O, where N denotes the next state and O is the output of the current state. State transitions occur on the rising edges of CLOCK, which have been shown as numbered dashed lines in Figure 4 on page 6. Draw the state diagram.

(5 Marks)

Table 2

	I = 0	I = 1
P	N/O	N/O
0	0/0	1/0
1	1/1	0/1

(b) Complete the timing diagram shown in Figure 4 on page 6 by showing P, N and O. Note that P has an initial value of 0.

(5 Marks)

(c) Implement the state machine using D flip-flop. Show the corresponding sequential circuit diagram.

(5 Marks)

(d) Assume that the above sequential circuit in part (c) can be described as shown in Figure 5 on page 6. The propagation delay of D flip-flop FF1 is t_p and the propagation delay of logic is t_d . For D flip-flop FF2, the setup time is t_s and hold time is t_h . Derive the maximum clock frequency f_{max} that has no timing violation.

(5 Marks)

Note: Question No. 4 continues on page 6.

Figure 4

Figure 5

- 5. (a) Design a 4-bit synchrotrons counter to count the following repeated sequence: 0, 4, 8, 9, 5, 1; 0, 4, 8, 9, 5, 1; ... If the counter enters unused states, make sure it will go to state 0 at the next clock cycle. Draw the state diagram.

 (4 Marks)
 - (b) Draw the state transition table when using: (i) D flip-flops; and (ii) T flip-flops. (4 Marks)
 - (c) Implement the counter using D flip-flops. Show detailed steps of derivation and the final circuit diagram.

 (6 Marks)
 - (d) Implement the counter using T flip-flops. Show detailed steps of derivation and the final circuit diagram.

 (6 Marks)

END OF PAPER

EE2004 DIGITAL ELECTRONICS IM1004 DIGITAL ELECTRONICS

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.