Question 1 (a)
$$\binom{51}{4}$$
 (b) $\binom{52}{5}$ $\binom{47}{5}$ $\binom{42}{5}$ $\binom{37}{5}$

Question 2 (a)
$$\binom{20}{3}$$
 $\binom{15}{2}$ (b) $\binom{16}{12}$

Question 3 (i)
$$a_n = 2^{n-2} + a_{n-1}$$

(ii) $a_1 = 0, a_2 = 1$
(iii) $a_n = 2^n - 1$

Question 4
$$\binom{13}{5}$$

Question 5

- 1. No
- 2. Yes
- 3. True
- 4. False
- 5. False
- 6. n k
- 7. $\binom{n}{2}$
- 8. A concatenation of two C_3 between any two vertices from two different C_3 .
- 9. K_4
- 10. $K_{n,2}$ is always planar.

Question 6

1. Proof. Suppose not, $\sum_{i=1}^{n} \deg(v_i) \geq 2n-1$. Since the sum of degrees are twice of the size of the edge set, we have

$$|E| \ge \frac{n-1}{2}.$$

Moreover, |E| is an integer, so $|E| \ge n$. But a tree with n vertices can have at most n-1 edges. Thus it is impossible.

2. Proof. Suppose $e_1 = (v_0, v_1)$ and $e_2 = (v_2, v_3)$. Since G is connected, there is a path from v_0 to v_2 , denoted by P. If v_3 is not in P, we add e_2 to the tail of P, i.e. the path is (v_0, \ldots, v_2, v_3) . Now e_2 is in P. Moreover, if e_1 is not in P, we add it to the head, i.e. P becomes $(v_1, v_0, \ldots, v_2, v_3)$. In all cases a path desired is found.