
MTH311 Real Analysis I

EXAM Q1-3

1. (a) Clearly a + S is also bounded and nonempty. Hence, by the Axiom of Com-
pleteness, both supS and sup(a+ S) exist.

sup(a+ S) ≤ a+ supS.

Let y ∈ a + S. Then y = a + x for some x ∈ S. Then x ≤ supS. Therefore
a + S ≤ a + supS. This is true for all y ∈ a + S. Therefore, a + supS is an
upper bound of a+ S. Hence sup(a+ S) ≤ a+ supS.

a+ supS ≤ sup(a+S). [We show that sup(a+S)− a is an upper bound of S.]

Let x ∈ S. Then a + x ∈ (a + S). Hence a + x ≤ sup(a + S). Therefore,
x ≤ sup(a+ s)− a. This is true for all x ∈ S. Hence sup(a+S)− a is an upper
bound of S.

(b) We show that − inf S is an upper bound of sup(−S) and then show that it is
the least among the upper bounds.

Let y ∈ −S. Then −y ∈ S. Therefore, −y ≥ inf S, which implies that y ≤
− inf S. This shows that − inf S is an upper bound.

Suppose s is an upper bound of −S. Then for all x ∈ S, we have −x ∈ (−S).
This means that −x ≤ s, which implies that x ≥ (−s). Therefore, −s is a lower
bound of S. Hence inf S ≥ (−s), in other words, − inf S ≤ s.

2. (a) Let ε > 0 be given. Then there exists N1 ∈ N such that 1
N
< ε

3
. Also, there

exists N2 ∈ N such that for all m ≥ n ≥ N2,

|bm − bn| <
ε

3
.

Take N := max{N1, N2}. Then for all m ≥ n ≥ N ,

|am − an| ≤ |am − bm|+ |bm − bn|+ |bn − an| ≤
ε

3
+
ε

3
+
ε

3
= ε.

(b) (i) Since
∑∞

n=0 an converges, we know that limn→∞ an = 0. Therefore, there
exists some N ∈ N such that for all n ≥ N , we have |an| ≤ 1. Then we
see that for all n ≥ N , we have |anbn| ≤ |bn|. Clearly

∑∞
n=N |bn| converges.

Therefore, by the Comparison Test, we find that
∑∞

n=N |anbn| converges.
Therefore,

∑∞
n=0 |anbn| converges.

(ii) Take (an) = (−1)n+1

n+1
. Then it is clear that

∑∞
n=0 an which is the alternating

harmonic series, converges. Let b0 = 1, and for all n ∈ N+, let bn = 0.
Then clearly

∑∞
n=0 |bn| = 1 converges. However,

∞∑
i=0

∞∑
j=0

|aibj| =
∞∑
i=0

0∑
j=0

|aibj| =
∞∑
i=0

|ai| =
∞∑
i=0

1

n+ 1

diverges.
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3. Let x ∈ f−1(B). Then f(x) ∈ B ⊆ f(A). Since B is open, there exists some ε > 0
such that

Vε(f(x)) ⊆ B.

Since f is continuous, there exists some δ > 0 such that

f(Vδ(x)) ⊆ Vε(f(x)) ⊆ B.

Since f maps the whole set Vδ(x) into B, this means that

Vδ(x) ⊆ f−1(B).
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QUESTION 1. (X marks)
(i)
(ii)

QUESTION 2. (X marks)
(i)
(ii)

QUESTION 3. (20 marks)
(i) Prove that for all x > 0 and n ∈ N, there is t ∈ (0, x) such that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+

et

(n+ 1)!
xn+1.

Proof. If f(x) = ex, then f (n)(x) = ex for all n = 0, 1, 2, · · · . So by a direct application of
Taylor’s theorem, we have the above identity. �

(ii) Show that for all n ∈ N, there is Rn such that

e = 1 + 1 +
1
2!

+
1
3!

+ · · ·+ 1
n!

+Rn and 0 < Rn <
3

(n+ 1)!
.

Proof. Using the result of part (i), we have

ex = 1 + 1 +
1
2!

+
1
3!

+ · · ·+ 1
n!

+
e

(n+ 1)!
.

We may take
Rn =

e

(n+ 1)!
.

Since 0 < e < 3, we have the desired result. �

(iii) Prove that e must be irrational.
Hint: If e = a/b with a, b ∈ N, then take n ∈ N with n > max{b, 3} and compute n!e using
the result of (ii). Is n!Rn an integer? How large and how small can it be?

Proof. If e = a/b with a, b ∈ N, then take n ∈ N with n > max{b, 3}. The result of (ii)
gives that

n!Rn = n!
a

b
− n!

(
1 + 1 +

1
2!

+
1
3!

+ · · ·+ 1
n!

)
.

The right-hand side of the above is an integer. Therefore, n!Rn ∈ Z. But the bounds on
Rn from part (ii) give that

0 ≤ n!Rn < n!
3

(n+ 1)!
=

3
n+ 1

< 1.

Thus we have reached a contradiction. �

Date: April 2012.
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QUESTION 4. (10 marks)
Suppose that

f(x) =

{
x2 sin

1
x
, x 6= 0

0, x = 0.

Show that f is a differentiable at x for all x ∈ R.

Proof. f is clearly differentiable at all x 6= 0. So it suffices to verify that f ′(0) exists. We have

f ′(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

h2 sin 1
h

h
= lim

h→0
h sin

1
h

= 0.

This completes the proof. �

QUESTION 5. (10 marks)
Let g be differentiable on (a, b) and suppose that there is m ∈ R such that |g′(x)| ≤ m for all

x ∈ (a, b). Prove that g is uniformly continuous on (a, b).

Proof. Let ε > 0 be given. Set

δ =
ε

m+ 1
.

Give x, y ∈ (a, b) with |x − y| < δ, by the mean value theorem, there is a t between x and y such
that

|f(x)− f(y)| = |x− y||f ′(t)| < δm < ε
m

m+ 1
< ε,

as desired. �

QUESTION 6. (25 marks)
Suppose that φ : R→ R is a continuous function and

lim
x→∞

φ(x)
xn

= lim
x→−∞

φ(n)
xn

= 0.

(i) Prove that if n is odd, then there is a number x such that

xn + φ(x) = 0.

Hint: If φ(x) 6= 0, then one of the following should hold.

lim
x→0−

φ(x)
xn

= −∞ lim
x→0+

φ(x)
xn

= −∞

Hence there should be places where φ(x)/xn < −1 and the condition of the problem should
imply that there should be places where φ(x)/xn > −1/2.

Proof. If φ(0) = 0, then x = 0 satisfies the required identity. If φ(0) > 0, then since n is
odd,

lim
x→0−

φ(x)
xn

= −∞;

if φ(0) < 0, then

lim
x→0+

φ(x)
xn

= −∞.

In the first case in which φ(0) > 0, there exists t < 0 such that φ(t)/tn < −1. Moreover,
since

lim
x→−∞

φ(x)
xn

= 0,
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there is y < 0 such that φ(y)/yn > −1. φ(x)/x is clearly continuous between t and y, so by
the intermediate value theorem, there must be an x between the two quantities such that

ϕ(x)
xn

= −1 or equivalently xn + φ(x) = 0.

The proof for the case φ(0) < 0 is similar. �

(ii) Prove that if n is even, then there is a number y such that

yn + φ(y) ≤ xn + φ(x).

Hint: First show that lim
x→±∞

(xn + φ(x)) = +∞. Then it should be possible to find a large

number N > 1 such that if x 6∈ [−N,N ], then

xn + φ(x) > max
x∈[−1,1]

(xn + φ(x)) .

Now a theorem from the lectures should help us deal with the values inside [−N,N ].

Proof. We have

lim
x→±∞

1 +
φ(x)
xn

= 1

which implies that
lim

x→±∞
xn + φ(x) = lim

x→±∞
xn =∞

as n is even. From this we can infer that there is N > 1 such that if x 6∈ [−N,N ],

xn + φ(x) > max
x∈[−1,1]

(xn + φ(x)) .

Moreover, since [−N,N ] is clearly a compact set, there is y ∈ [−N,N ] such that

yn + φ(y) = min
x∈[−N,N ]

(xn + φ(x)).

Also, if x 6∈ [−N,N ], then

yn + φ(y) = min
x∈[−N,N ]

(xn + φ(x)) ≤ max
x∈[−1,1]

(xn + φ(x)) < xn + φ(x).

This completes the proof. �
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