
Suggested solutions for MAS326(2010-2012)

Question 1

Solution. (i) The basic solution determined by the basis {x1, x2, x3} is

(b1 − b2 − b3,−b1 + 2b2 + b3, b3, 0, 0).

The corresponding complementary dual solution is 2 1 1
1 1 0
0 0 1

−T  c1
c2
c3

 =

 c1 − c2
−c1 + 2c2
−c1 + c2 + c3

 .

(ii) The tableau corresponding to the basis {x1, x2, x3} is

z x1 x2 x3 x4 x5 RHS

1 0 0 0 -2 2 8

0 1 0 0 1 -1 3
0 0 1 0 -1 2 0
0 0 0 1 1 2 1

By the largest coefficient rule, x4 is the entering variable.

By the smallest subscript rule, using the minimum ratio test

min

{
3

1
,−, 1

1

}
=

3

1
,

x1 is the leaving variable.

Question 2

Note: It should be bT =
[
1 1 1

]
.

Solution. The basis {x1, x2, x5, x8} determines the basic solution

(x∗1, x
∗
2, x

∗
5, x

∗
8) = (2, 3, 8,−2)

by

x∗8 = 3− (x∗1 + x∗2 + x∗3 + x∗4) = 3− (2 + 3 + 0 + 0) = −2.

Hence x8 is the leaving variable.
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The inverse matrix B−1 is updated by adding the row[
−a41 −a42 −a45

]
B−1 =

[
−1 −1 0

]
B−1 =

[
0 −3 −2

]
followed by adding the column

[
0 0 0 1

]T
, giving

B−1 ←


0 1 1 0
0 2 1 0
1 3 4 0
0 −3 −2 1

 .

The dual solution is y⃗ = B−T c⃗B =
[
0 5 3 0

]T
. The coefficients ā8j can be

computed by

[
ā83 ā84 ā86 ā87

]
= (x8-row of B−1)×N =

[
0 −3 −2 1

]
×


0 −2 0 0
1 0 1 0
0 0 0 1
0 1 0 0


=
[
−2 1 −3 −2

]
.

The minimum ratio test

min

{
−1
−2

, ,
−5
−3

,
−3
−2

}
=
−1
−2

=
1

2

shows that x3 is the entering variable.

We now proceed to update the basic solution. Observe that

d⃗ = B−1a⃗3 =


1
2
3
−2

 .

The updated basic solution x⃗∗ has

x∗3 ←
x∗8
d8

=
−2
−2

= 1, x∗1 ← x∗1 − d1 ×
x∗8
d8

= 1,

x∗2 ← x∗2 − d2 ×
x∗8
d8

= 1, x∗5 ← x∗5 − d5 ×
x∗8
d8

= 5.

Therefore, the basic solution x∗ with (x∗1, x
∗
2, x

∗
3, x

∗
5) = (1, 1, 1, 5) determined by the

updated basis {x1, x2, x3, x5} is optimal.

Question 3

Solution. (a) Let JB denote the basis determined by the spanning tree {AB,AC,CD,EA}.
It is easy to see that, corresponding to basic variables xAB, xAC , xCD, xEA and nonbasic
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variables xBE , xBC , xDE , respectively,

cB = (−1,−a,−7,−1), cN = (−1,−9,−1),

B =


−1 0 1 0
0 −1 0 0
0 0 0 0
0 0 −1 1

 , N =


1 1 0
0 −1 0
0 0 1
−1 0 −1


To ensure this basis is optimal, it should be

cTBB
−1N − cN ≥ 0.

Thus, we conclude that 0 ≤ a ≤ 10.

(b) By the largest coefficient rule, tCD is the entering variable, and xAC is the

leaving variable.

Question 4

Solution. (a) Using the Northwest Corner rule, we get a feasible solution

(x11, . . . , x34) = (20, 0, 0, 0, 10, 20, 0, 0, 0, 20, 10, 30).

(b) For basic variable x14, u1 + v4 = 2 with u1 = 0 gives v4 = 2.

For basic variable x24, u2 + v4 = c with v4 = 2 gives u2 = c− 2.

For basic variable x21, u2 + v1 = 3 with u2 = c− 2 gives v1 = 5− c.

For basic variable x31, u3 + v1 = 3 with v1 = 5− c gives u3 = c− 2.

For basic variable x32, u3 + v2 = 2 with u3 = c− 2 gives v2 = 4− c.

For basic variable x33, u3 + v3 = c with u3 = c− 2 gives v3 = 2.

We now compute the reduced costs for the nonbasic variables using the formula

c̄ij = ui + vj − cij . We have

c̄11 = 2− c, c̄12 = 4− 2c, c̄13 = −2,
c̄22 = −3, c̄23 = c− 4, c̄34 = c− 6.

If all the above c̄ij are nonpositive, then the given basis is optimal. Thus, c ≥ 6.

Question 5

Solution. (i) Denote f(x, y) := −e−x − e−2y and g(x, y) := x + y. The function

f(x, y) is concave since

∇2f(x, y) =

[
−e−x 0
0 −4e−2y

]
≼ 0

for any (x, y) ∈ R2. Meanwhile, the function g(x, y) is convex since

g(λ(x1, y1) + (1− λ)(x2, y2)) = λg(x1, y1) + (1− λ)g(x2, y2)
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for all (x1, y1), (x2, y2) and all λ ∈ (0, 1). Thus this nonlinear program is a convex

program.

(ii) The Karush-Kuhn-Tucker conditions are

(1)(a)e−x − λ ≤ 0, (b)2e−2y − λ ≤ 0,
(2)(a)x(e−x − λ) = 0, (b)y(2e−2y − λ) = 0,
(3)x+ y ≤ 1,
(4)λ(1− x− y) = 0,
(5)x, y ≥ 0,
(6)λ ≥ 0.

We consider for cases.

Case 1, x, y = 0:

In this case, condition (4) implies that λ = 0. This reduces condition (1a) to 1 ≤ 0,

which is impossible. Therefore, there are no solutions in this case.

Case 2, x > 0, y = 0:

In this case, condition (2a) implies that λ = e−x > 0. Condition (4) then implies

that x = 1. Thus, λ = e−1, which is in contradiction with condition (1b). Therefore,

there are no solutions in this case.

Case 2, x = 0, y > 0:

In this case, condition (2b) implies that λ = 2e−2y > 0. Condition (4) then implies

that y = 1. Thus, λ = 2e−2, which is in contradiction with condition (1a). Therefore,

there are no solutions in this case.

Case 2, x > 0, y > 0:

In this case, condition (2) implies that e−x = λ = 2e−2y > 0, which results in

−x+2y = ln2. Condition (4) then implies that x+ y = 1. Thus, x = 2−ln2
3 , y = 1+ln2

3 ,

and λ = 3
√
2e−

2
3 , which satisfies all KarushKuhn-Tucker conditions, and conclude that

this is a solution to the Karush-Kuhn-Tucker conditions.

Question 6

Solution. Suppose x∗ is an n-vector and the number of inequalities is m. For a

fixed n-vector c, by Theorem 4.1.5, there is a unique complementary dual solution y

such that

y = B−T cB, (1)

where B is the submatrix of coefficients of basic variables in the augmented form

determined by the basis JB, and cB is the vector coefficients of the basic variables in

the objective function.

As shown in the lecture, the reduced cost of x∗j is

cj − y1a1j − · · · − ymamj , j = 1, . . . , n.

It is known that if a feasible basis has negative reduced costs for all nonbasic vari-

ables, then the BFS determined by the basis is the only optimal solution. Thus, if c is
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chosen to satisfy

cj = y1a1j + · · ·+ ymamj , x∗j ∈ JB,

cj < y1a1j + · · ·+ ymamj , j ∈ {1, . . . , n} but x∗j /∈ JB,

where the above inequalities are in terms of c1, . . . , cn by (1), then the linear program

has the unique optimal solution x∗

Question 6

Proof. Suppose x∗ is an n-vector and the number of inequalities is m. By Complemen-

tary Slackness Theorem, the dual of the linear program has a feasible solution y∗ such

that

(y∗1a1j + · · ·+ y∗mamj − cj)x
∗
j = 0 for j = 1, . . . , n, (2)

(bi − ai1x
∗
1 − · · · − ainx

∗
n)y

∗
i = 0 for i = 1, . . . ,m. (3)

Since Ax∗ < b, y∗i = 0 for i = 1, . . . ,m by (3). Thus, cjx
∗
j = 0 for j = 1, . . . , n by (2),

whence cTx∗ = 0.
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