Question 1

(1) **B**

The correct electronic configurations for the other species given are:

Cu²⁺: [Ar]3d⁹ Cr: [Ar]4s¹3d⁵

Pb: $[Xe]4f^{14}5d^{10}6s^26p^2$

(2) **B**

The head-on overlap of wavefunctions with different signs gives σ^*

(3) C

Simply plug all the values into the E_n equation given in the formula page, with n=1. Do take note resultant answer is in cgs-esu, be familiar with the conversion to J!

(4) B, C and D

Option A: The order of ionisation energy should be Cs<Al<Mg<Si<N

Option B: N has a **lower** electron affinity than O, due to the disruption of its stable 2p³ configuration with the addition of a new electron.

(5) **A** and **B**

Option A: The node is the region where the wavefunction *passes through* zero. The semantics here is more mathematical than anything else.

Option B: The energy equation cannot be used with a two-electron system.

Option C: CORRECT, All orbitals of hydrogen with the same principal quantum number are degenerate at the ground state.

Option D: CORRECT, All one-electron systems can have their Schrodinger equation solved with exact solutions.

(6) C and D

I has a maximum value of n-1, and m cannot take absolute values larger than I.

(7) A and C

The diagram shows 2 radial nodes. This corresponds to any orbital whose *n* and *l* values differ by 3 e.g. 3s, 4p, 5d, 6f etc.

(8) A

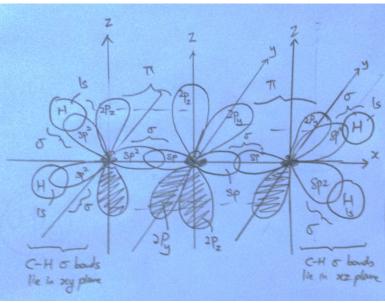
Option A: The angular component of a s-orbital wavefunction is a constant and does not depend on *n*.

Option B: CORRECT, At a given n, the orbital corresponding to an l value of n-1 has its radial distribution function's maxima occur at n^2a_0 .

Option C: CORRECT, The Bohr model assumes a fixed orbit around the nucleus, thus the electron cannot be found anywhere else but within that orbit.

Option D: CORRECT, There is literally no atom whose second ionisation energy is lower than the first.

Question 2


(1) We first group the orbitals in the sequence: (1s), (2s, 2p), (3s, 3p), (3d), (4s, 4p)...

For calcium, there are 2 4s electrons and no 3d electrons. For each 4s electron, the other affords a shielding of 0.35; the next lower quantum number electrons (3s, 3p) afford a shielding of 8×0.85 , and the remaining 10 inner electrons gives a shielding of 10. The total shielding S is thus 17.15. Z_{eff} is thus 20-17.15=2.85

For titanium, there are 2 4s electrons and 2 3d electrons. For each 4s electron, the other affords a shielding of 0.35 and the next lower quantum number electrons (3s, 3p) and (3d) afford a shielding of 10×0.85 , and the remaining 10 inner electrons gives a shielding of 10. The total shielding S is thus 18.85. Z_{eff} is thus 22 - 18.85 = 3.15

(2)

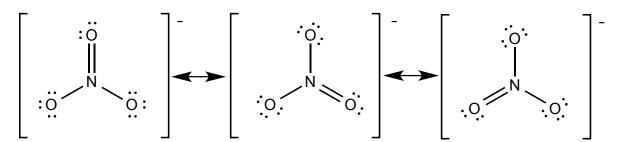
(3)

(4)

- (i) He_2 , Be_2 , Ne_2
- (ii) B_2 , O_2
- (iii) N₂

CM1111* Solutions

(5)


(i)

5 electron regions around Xe, basic shape is trigonal bipyramidal 2 bonding electron pairs; shape is linear. F—Xe—F bond angle is 180° Hybridisation is sp^3d_{z2}

(ii)

4 electron regions around CI, basic shape is tetrahedral 2 bonding electron pairs; shape is bent O—CI—O bond angle is <109.5° Hybridisation of CI is sp³

(iii)

3 electron regions around N, basic shape is trigonal planar 3 bonding electron pairs; shape is trigonal planar

O—N—O bond angle is 120°

Hybridisation of N is sp²